Bescon StaSeal Concrete Sealer Clear & Colour # **Bescon Industries** Chemwatch: 71-3095 Version No: 2.1.1.1 Safety Data Sheet according to WHS and ADG requirements # Chemwatch Hazard Alert Code: 2 Issue Date: 24/11/2016 Print Date: 22/03/2019 S.GHS.AUS.EN # SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING ### **Product Identifier** | Product name | Bescon StaSeal Concrete Sealer Clear & Colour | |-------------------------------|---| | Synonyms | Not Available | | Proper shipping name | RESIN SOLUTION, flammable | | Other means of identification | Not Available | # Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Protective coating for concrete masonry surfaces. # Details of the supplier of the safety data sheet | Registered company name | Bescon Industries | |-------------------------|--| | Address | 21 Keysborough Avenue Keysborough VIC 3173 Australia | | Telephone | +61 3 9701 5622 | | Fax | Not Available | | Website | Not Available | | Email | info@bescon.com.au | # Emergency telephone number | Association / Organisation | Not Available | | |-----------------------------------|---------------|--| | Emergency telephone numbers | Not Available | | | Other emergency telephone numbers | Not Available | | # **SECTION 2 HAZARDS IDENTIFICATION** # Classification of the substance or mixture | Poisons Schedule | S5 | | |--------------------|---|--| | Classification [1] | Flammable Liquid Category 3, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Aspiration Hazard Category 1 | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | Label elements Hazard pictogram(s) SIGNAL WORD DANGER # Hazard statement(s) | H226 | Flammable liquid and vapour. | |--------|---| | H336 | May cause drowsiness or dizziness. | | H304 | May be fatal if swallowed and enters airways. | | AUH019 | May form explosive peroxides. | # Precautionary statement(s) Prevention P210 Keep away from heat/sparks/open flames/hot surfaces. - No smoking. Chemwatch: **71-3095** Page **2** of **11** Version No: 2.1.1.1 ### Bescon StaSeal Concrete Sealer Clear & Colour Issue Date: **24/11/2016**Print Date: **22/03/2019** | P271 | Use only outdoors or in a well-ventilated area. | |------|---| | P240 | Ground/bond container and receiving equipment. | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | P242 | Use only non-sparking tools. | | P243 | Take precautionary measures against static discharge. | | P261 | Avoid breathing mist/vapours/spray. | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | # Precautionary statement(s) Response | P301+P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. | | |----------------|---|--| | P331 | Do NOT induce vomiting. | | | P370+P378 | In case of fire: Use alcohol resistant foam or normal protein foam for extinction. | | | P312 | a POISON CENTER or doctor/physician if you feel unwell. | | | P303+P361+P353 | ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. | | | P304+P340 | IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. | | # Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | |-----------|--| | P405 | Store locked up. | # Precautionary statement(s) Disposal P501 Dispose of contents/container in accordance with local regulations. # **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** ### Substances See section below for composition of Mixtures ### Mixtures | CAS No | %[weight] | Name | |---------------|-----------|---------------------------------| | Various | >70 | liquid hydrocarbons | | Not Available | 10-30 | acrylate methacrylate copolymer | # **SECTION 4 FIRST AID MEASURES** # Description of first aid measures | Description of first aid fileas | ures | |---------------------------------|---| | Eye Contact | If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If furnes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. | # Indication of any immediate medical attention and special treatment needed Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. - ▶ Heavy and persistent skin contamination over many years may lead to dysplastic changes. Pre-existing skin disorders may be aggravated by exposure to this product. - In general, emesis induction is unnecessary with high viscosity, low volatility products, i.e. most oils and greases. - ► High pressure accidental injection through the skin should be assessed for possible incision, irrigation and/or debridement. NOTE: Injuries may not seem serious at first, but within a few hours tissue may become swollen, discoloured and extremely painful with extensive subcutaneous necrosis. Product may be forced through considerable distances along tissue planes. Chemwatch: 71-3095 Page 3 of 11 Issue Date: 24/11/2016 Version No: 2.1.1.1 Bescon StaSeal Concrete Sealer Clear & Colour Print Date: 22/03/2019 # **SECTION 5 FIREFIGHTING MEASURES** # **Extinguishing media** - Foam. - ► Dry chemical powder. - ► BCF (where regulations permit). - ▶ Carbon dioxide. - ▶ Water spray or fog Large fires only. # Special hazards arising from the substrate or mixture | Fire Incompatibility | ► Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result | | |-------------------------|--|--| |
Advice for firefighters | | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. | | | Fire/Explosion Hazard | Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) other pyrolysis products typical of burning organic material. CARE: Water in contact with hot liquid may cause foaming and a steam explosion with wide scattering of hot oil and possible severe burns. Foaming may cause overflow of containers and may result in possible fire. | | # SECTION 6 ACCIDENTAL RELEASE MEASURES HAZCHEM # Personal precautions, protective equipment and emergency procedures •3Y See section 8 # **Environmental precautions** See section 12 # Methods and material for containment and cleaning up | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container. Slippery when spilt. | |--------------|--| | Major Spills | Slippery when spilt. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse /absorb vapour. Contain spill with sand, earth or vermiculite. Use only spark-free shovels and explosion proof equipment. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services. | Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 HANDLING AND STORAGE** Chemwatch: 71-3095 Page 4 of 11 Issue Date: 24/11/2016 Version No: 2.1.1.1 ### Bescon StaSeal Concrete Sealer Clear & Colour Print Date: 22/03/2019 ### Precautions for safe handling The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid. Even with proper grounding and bonding, this material can still accumulate an electrostatic charge. If sufficient charge is allowed to accumulate, electrostatic discharge and ignition of flammable air-vapour mixtures can occur. - ▶ Containers, even those that have been emptied, may contain explosive vapours. - Do NOT cut, drill, grind, weld or perform similar operations on or near containers. - DO NOT allow clothing wet with material to stay in contact with skin - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of overexposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked - Safe handling Avoid smoking, naked lights or ignition sources. - Avoid generation of static electricity. - DO NOT use plastic buckets - Earth all lines and equipment. - Use spark-free tools when handling. - Avoid contact with incompatible materials. - When handling, **DO NOT** eat, drink or smoke - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. ### Consider storage under inert gas. - ▶ Store in original containers in approved flammable liquid storage area. - Store away from incompatible materials in a cool, dry, well-ventilated area. - DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - No smoking, naked lights, heat or ignition sources. - For Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access - ▶ Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances. - Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems. - Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors. - ▶ Keep adsorbents for leaks and spills readily available. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS In addition, for tank storages (where appropriate): - ▶ Store in grounded, properly designed and approved vessels and away from incompatible materials. - For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. - ▶ Storage tanks should be above ground and diked to hold entire contents. # Conditions for safe storage, including any incompatibilities Other information Suitable container - Packing as supplied by manufacturer. - Plastic containers may only be used if approved for flammable liquid. - ▶ Check that containers are clearly labelled and free from leaks - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - ► For materials with a viscosity of at least 2680 cSt. (23 deg. C) - ► For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic ### The interaction of alkenes and alkynes with nitrogen oxides and oxygen may produce explosive addition products; these may form at very low temperatures and explode on heating to higher temperatures (the addition products from 1,3-butadiene and cyclopentadiene form rapidly at -150 C and ignite or explode on warming to -35 to -15 C). These derivatives ("pseudo- nitrosites") were formerly used to characterise terpene hydrocarbons. ### Exposure to air must be kept to a minimum so as to limit the build-up of peroxides which will
concentrate in bottoms if the product is distilled. The product must not be distilled to dryness if the peroxide concentration is substantially above 10 ppm (as active oxygen) since explosive decomposition may occur. Distillate must be immediately inhibited to prevent peroxide formation. The effectiveness of the antioxidant is limited once the peroxide levels exceed 10 ppm as active oxygen. Addition of more inhibitor at this point is generally ineffective. Prior to distillation it is recommended that the product should be washed with aqueous ferrous ammonium sulfate to destroy peroxides; the washed product should be immediately re-inhibited. - A range of exothermic decomposition energies for double bonds is given as 40-90 kJ/mol. The relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment. For example, in "open vessel processes" (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in "closed vessel processes" (opening is a safety valve or bursting disk) present some danger where the decomposition energy exceeds 150 J/g. - BRETHERICK: Handbook of Reactive Chemical Hazards, 4th Edition - The reaction of ozone with alkenes is believed to proceed via the formation of a vibrationally excited Primary Ozonide (POZ) which falls apart to give a vibrationally excited Criegee Intermediate (CI) The CI can decompose to give OH radicals, or be stabilised. This may be of relevance in atmospheric chemistry. - Violent explosions at low temperatures in ammonia synthesis gas units have been traced to the addition products of dienes and nitrogen dioxide # Storage incompatibility Chemwatch: 71-3095 Page 5 of 11 Issue Date: 24/11/2016 Version No: 2.1.1.1 ### Bescon StaSeal Concrete Sealer Clear & Colour Print Date: 22/03/2019 CARE: Water in contact with heated material may cause foaming or a steam explosion with possible severe burns from wide scattering of hot material. Resultant overflow of containers may result in fire - Fig. The various oxides of nitrogen and peroxyacids may be dangerously reactive in the presence of alkenes. BRETHERICK L.: Handbook of Reactive Chemical Hazards - Avoid reaction with strong Lewis or mineral acids. - ▶ Reaction with halogens requires carefully controlled conditions. - ▶ Free radical initiators should be avoided. - Avoid reaction with oxidising agents # **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** ### **Control parameters** OCCUPATIONAL EXPOSURE LIMITS (OEL) INGREDIENT DATA Not Available ### **EMERGENCY LIMITS** | - | | | | | |--|---------------|---------------|---------------|---------------| | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | | Bescon StaSeal Concrete Sealer
Clear & Colour | Not Available | Not Available | Not Available | Not Available | | Ingredient | Original IDLH | | Revised IDLH | | | liquid hydrocarbons | Not Available | | Not Available | | ### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |---|------------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100
f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200
f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500
f/min.) | ### Appropriate engineering controls Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | | |--|----------------------------------|--| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | | 3: Intermittent, low production. | 3: High production, heavy use | | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used # Personal protection - Safety glasses with side shields. - Chemical goggles. # Eye and face protection Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] Chemwatch: 71-3095 Page 6 of 11 Issue Date: 24/11/2016 Version No: 2.1.1.1 ### Bescon StaSeal Concrete Sealer Clear & Colour Print Date: 22/03/2019 ### Skin protection See Hand protection below - Wear chemical protective gloves, e.g. PVC. - ▶ Wear safety footwear or safety gumboots, e.g. Rubber The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. # Hands/feet protection Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - Excellent when breakthrough time > 480 min - Good when breakthrough time > 20 min - Fair when breakthrough time < 20 min - Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It
should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended # **Body protection** Other protection # See Other protection below # Overalls. - PVC Apron. - ▶ PVC protective suit may be required if exposure severe. - Evewash unit. - ▶ Ensure there is ready access to a safety shower - Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive. compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. # Respiratory protection Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | Required minimum protection factor Maximum gas/vapour concentration present in air p.p.m. (by volume) | | Half-face Respirator | Full-Face Respirator | |---|-------|----------------------|----------------------| | up to 10 | 1000 | A-AUS / Class1 P2 | - | | up to 50 | 1000 | - | A-AUS / Class 1 P2 | | up to 50 | 5000 | Airline * | - | | up to 100 | 5000 | - | A-2 P2 | | up to 100 | 10000 | - | A-3 P2 | | 100+ | | | Airline** | * - Continuous Flow ** - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used # **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** Chemwatch: **71-3095** Page **7** of **11** Issue Date: 24/11/2016 Version No: 2.1.1.1 Print Date: 22/03/2019 Bescon StaSeal Concrete Sealer Clear & Colour # Information on basic physical and chemical properties | Appearance | Clear or coloured flammable liquid with aromatic hydrocarbon odour; does not mix with water. | | | |--|--|---|---------------------| | Physical state | Liquid | Relative density (Water = 1) | 0.91 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | 20-30 cps @ 20 degC | | Initial boiling point and boiling range (°C) | 138-175 | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | 24 | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Flammable. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 7.7 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 0.9 | Volatile Component (%vol) | 21 | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (1%) | Not Applicable | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | # **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 TOXICOLOGICAL INFORMATION** | Information on toxicological effects | | | | | |--------------------------------------|---|--|--|--| | Inhaled | Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation hazard is increased at higher temperatures. Inhaling high concentrations of mixed hydrocarbons can cause narcosis, with nausea, vomiting and lightheadedness. Low molecular weight (C2-C12) hydrocarbons can irritate mucous membranes and cause incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and stupor. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Nerve damage can be caused by some non-ring hydrocarbons. Symptoms are temporary, and include weakness, tremors, increased saliva, some convulsions, excessive tears with discolouration and inco-ordination lasting up to 24 hours. | | | | | Ingestion | Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733) Accidental ingestion of the material may be damaging to the health of the individual.
Isoparaffinic hydrocarbons cause temporary lethargy, weakness, inco-ordination and diarrhoea. Ingestion of petroleum hydrocarbons can irritate the pharynx, oesophagus, stomach and small intestine, and cause swellings and ulcers of the mucous. Symptoms include a burning mouth and throat; larger amounts can cause nausea and vomiting, narcosis, weakness, dizziness, slow and shallow breathing, abdominal swelling, unconsciousness and convulsions. Alkenes are generally of low toxicity but they are considered aspiration hazards. | | | | | Skin Contact | Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. There is some evidence to suggest that this material can cause inflammation of the skin on contact in some persons. Skin exposure to isoparaffins may produce slight to moderate irritation in animals and humans. Rare sensitisation reactions in humans have occurred. Medium sized alkenes can cause skin irritation and sloughing, especially in long-term exposure. Open cuts, abraded or irritated skin should not be exposed to this material The material may accentuate any pre-existing dermatitis condition Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Aromatic hydrocarbons may produce sensitivity and redness of the skin. They are not likely to be absorbed into the body through the skin but branched species are more likely to. | | | | | Еуе | There is some evidence to suggest that this material can cause eye irritation and damage in some persons. Instillation of isoparaffins into rabbit eyes produces only slight irritation. Direct eye contact with petroleum hydrocarbons can be painful, and the comeal epithelium may be temporarily damaged. Aromatic species can cause irritation and excessive tear secretion. | | | | Chemwatch: **71-3095** Page **8** of **11** Version No: 2.1.1.1 ### Bescon StaSeal Concrete Sealer Clear & Colour Issue Date: **24/11/2016**Print Date: **22/03/2019** Chronic Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Constant or exposure over long periods to mixed hydrocarbons may produce stupor with dizziness, weakness and visual disturbance, weight loss and anaemia, and reduced liver and kidney function. Skin exposure may result in drying and cracking and redness of the skin. Oral administration of C20-24 alkenes has not been shown to exhibit significant toxicity in humans. Oil may contact the skin or be inhaled. Extended exposure can lead to eczema, inflammation of hair follicles, pigmentation of the face and warts on the soles of the feet. | Bescon StaSeal Concrete
Sealer Clear & Colour | TOXICITY Not Available | IRRITATION Not Available | |--|-------------------------|---------------------------| | liquid hydrocarbons | TOXICITY Not Available | IRRITATION Not Available | Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances # LIQUID HYDROCARBONS For olefins: Studies have shown that normal alpha olefins have little or no toxic effect on animals except if inhaled in high concentrations. They may produce minimal skin and eye irritation, but do not sensitise the skin. Exposure to very high levels of C6-C16 normal alpha olefin vapours caused central nervous system effects, including anaesthesia (loss of sensation). If C20+ products are heated, fumes may produce nausea and irritation of the upper airway. The available data indicate normal alpha olefins do not cause mutations. Repeated exposure in animals has affected the liver and kidney. Olefins are not expected to cause reproductive or developmental toxicity. Based on the available evidence, this group of substances does not cause genetic toxicity. Although there is no available data regarding cancer-causing potential, the structure of these substances does not raise concern for humans. No significant acute toxicological data identified in literature search. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | × | Reproductivity | × | | Serious Eye Damage/Irritation | × | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | ✓ | Legend: X - Data either not available or does not fill the criteria for classification ✓ – Data available to make classification # **SECTION 12 ECOLOGICAL INFORMATION** # Toxicity | Bescon StaSeal Concrete
Sealer Clear & Colour | ENDPOINT
Not
Available | TEST DURATION (HR) Not Available | SPECIES Not Available | VALUE
Not
Available | SOURCE
Not
Available | |--|------------------------------|-----------------------------------|------------------------|---------------------------|----------------------------| | liquid hydrocarbons | ENDPOINT
Not
Available | TEST DURATION (HR) Not Available | SPECIES Not Available | VALUE
Not
Available | SOURCE
Not
Available | Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Substances containing unsaturated carbons are ubiquitous in indoor environments. They result from many sources (see below). Most are reactive with environmental ozone and many produce stable products which are thought to adversely affect human health. The potential for surfaces in an enclosed space to facilitate reactions should be considered. | Source of unsaturated substances | Unsaturated substances (Reactive Emissions) | Major Stable Products produced following reaction with ozone. | |--|--|---| | Occupants (exhaled breath, ski oils, personal care products) | Isoprene, nitric oxide, squalene, unsaturated sterols, oleic acid and other unsaturated fatty acids, unsaturated oxidation products | Methacrolein, methyl vinyl ketone, nitrogen dioxide, acetone, 6MHQ, geranyl acetone, 4OPA, formaldehyde, nonanol, decanal, 9-oxo-nonanoic acid, azelaic acid, nonanoic acid. | | Soft woods, wood flooring, including cypress, cedar and silver fir boards, houseplants | Isoprene, limonene, alpha-pinene, other terpenes and sesquiterpenes | Formaldehyde, 4-AMC, pinoaldehyde, pinic acid, pinonic acid, formic acid, methacrolein, methyl vinyl ketone, SOAs including ultrafine particles | | Carpets and carpet backing | 4-Phenylcyclohexene, 4-vinylcyclohexene, styrene, 2-ethylhexyl acrylate, unsaturated fatty acids and esters | Formaldehyde, acetaldehyde, benzaldehyde, hexanal, nonanal, 2-nonenal | | Linoleum and paints/polishes containing linseed oil | Linoleic acid, linolenic acid | Propanal, hexanal, nonanal, 2-heptenal, 2-nonenal, 2-decenal, 1-pentene-3-one, propionic acid, n-butyric acid | | Latex paint | Residual monomers | Formaldehyde | | Certain cleaning products, polishes, waxes, air fresheners | Limonene, alpha-pinene, terpinolene, alpha-terpineol, linalool, linalyl acetate and other terpenoids, longifolene and other sesquiterpenes | Formaldehyde, acetaldehyde, glycoaldehyde, formic acid, acetic acid, hydrogen and organic peroxides, acetone, benzaldehyde, 4-hydroxy-4-methyl-5-hexen-1-al, 5-ethenyl-dihydro-5-methyl-2(3H)-furanone, 4-AMC, SOAs including ultrafine particles | | Natural rubber adhesive | Isoprene, terpenes | Formaldehyde, methacrolein, methyl vinyl ketone | | Photocopier toner, printed paper, styrene polymers | Styrene | Formaldehyde, benzaldehyde | | Environmental tobacco smoke | Styrene, acrolein, nicotine | Formaldehyde, benzaldehyde, hexanal, glyoxal, N-methylformamide, nicotinaldehyde, cotinine | Chemwatch: **71-3095** Page **9** of **11** Issue Date: **24/11/2016** ### Bescon StaSeal Concrete Sealer Clear & Colour | Soiled clothing, fabrics, bedding | Squalene, unsaturated sterols, oleic acid and other saturated fatty acids | Acetone, geranyl acetone, 6MHO, 40PA, formaldehyde, nonanal, decanal, 9-oxo-nonanoic acid, azelaic acid, nonanoic acid | |--|--|---| | Soiled particle filters | Unsaturated fatty acids from plant waxes, leaf litter, and other vegetative debris; soot; diesel particles | Formaldehyde, nonanal, and other aldehydes; azelaic acid; nonanoic acid; 9-oxo-nonanoic acid and other oxo-acids; compounds with mixed functional groups (=O, -OH, and -COOH) | | Ventilation ducts and duct liners | Unsaturated fatty acids and esters, unsaturated oils, neoprene | C5 to C10 aldehydes | | "Urban grime" | Polycyclic aromatic hydrocarbons | Oxidized polycyclic aromatic hydrocarbons | | Perfumes,
colognes, essential oils (e.g. lavender, eucalyptus, tea tree) | Limonene, alpha-pinene, linalool, linalyl acetate, terpinene-4-ol, gamma-terpinene | Formaldehyde, 4-AMC, acetone, 4-hydroxy-4-methyl-5-hexen-1-al, 5-ethenyl-dihydro-5-methyl-2(3H) furanone, SOAs including ultrafine particles | | Overall home emissions | Limonene, alpha-pinene, styrene | Formaldehyde, 4-AMC, pinonaldehyde, acetone, pinic acid, pinonic acid, formic acid, benzaldehyde, SOAs including ultrafine particles | Abbreviations: 4-AMC, 4-acetyl-1-methylcyclohexene; 6MHQ, 6-methyl-5-heptene-2-one, 4OPA, 4-oxopentanal, SOA, Secondary Organic Aerosols Reference: Charles J Weschler: Environmental Helath Perspectives. Vol 114. October 2006 For alkenes (olefins) Version No: 2.1.1.1 ### **Environmental fate:** The potential for exposure of aquatic organisms to members of the higher olefins will be influenced by their physico-chemical properties. The predicted or measured water solubilities of these olefins range from 50 mg/L at 20 C for hexene to 0.00015 mg/L at 25 C for 1-octadecene, and to 6.33 [E-23] mg/L at 25 C for C54 alpha olefin, which suggests there is a lower potential for the larger olefins to be bioavailable to aguatic organisms due to their low solubilities. Their vapor pressures range from 230.6 hPa at 25 C for hexene to 0.00009 hPa at 25 C for 1-octadecene, and to 1.13 [E-16] hPa at 25 C for C54 alpha olefin, which suggests the shorter chain olefins will tend to partition to the air at a significant rate and not remain in the other environmental compartments for long periods of time; while the longer chain olefins will tend to partition primarily to water, soil or sediment, depending on water solubility and sorption behavior. The predicted soil adsorption coefficients (Koc) range from 149 for C6 to 230,800 for C18 and to 1.0 [E10] for C54, indicating increasing partitioning to soil/sediment with increasing carbon number. Level I fugacity modelling predicts that the C6-13 olefins would partition primarily to air, while the C16 and longer chain olefins would partition primarily to soil. Results of Level III fugacity modelling suggest that the C6-8 olefins will partition primarily to the water compartment; and, as the chain length increases beyond C10, soil and sediment become the primary compartments. These chemicals have a very low potential to hydrolyse and do not photodegrade directly. However, in the air, all members of the category are subject to atmospheric oxidation from hydroxyl radical attack, with calculated degradation half-lives of 1.8 to 4.8 hours. C6 -30 olefins have been shown to degrade to an extent of approximately 8-92% in standard 28 day biodegradation tests. These results were not clearly correlated with carbon number or any other identifiable parameter; however, the weight of evidence shows that the members of the higher olefins have potential for degradation in the environment. Volatilisation from water is predicted to occur rapidly (hours to days), with Henry's Law Constants (bond method) ranging from 0.423 (C6) to 10.7 (C18), and to 2.89 [E5] (C54) atm-m3/mol. Consideration of these degradation processes supports the assessment that these substances will degrade relatively rapidly in the environment and not persist. Based on calculated bioconcentration factors, the C6, C7, and C16 and longer chain length category members are not expected to bioaccumulate (BCF: C6 = 44-46, C7 = 236, C16 = 71-92 and >= C18 = 3.2-4.6). Although the C8 - 15 olefins have BCFs ranging from 313 to 2030, and Kow values ranging from 4.13 to 7.49, and thus are considered to have the potential for bioaccumulation, their physicochemical properties and fate indicate that there would be limited environmental exposure because of volatility, biodegradability and limited solubility. ### Ecotoxicity: Data indicate that acute aquatic toxicity can be observed for C6 through the C10 olefins (C6: EC/LC50 range of 1-10 mg/L; C7-C10: EC/LC50 range of 0.1-1.0 mg/L), and that toxicity increases with increasing carbon number within that range, which is consistent with increasing Kow values (3.07 -5.12). Above a chain length of 10, toxicity is not observed within the limits of solubility. However, data indicate that chronic aquatic toxicity can be observed in the C10 olefins (EC10 = 20.0 ug/L, EC50= 28.1 ug/L, NOEC = 19.04 ug/L). Data also suggest that aquatic toxicity does not differ with bond location or presence of branching. # DO NOT discharge into sewer or waterways. # Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|---------------------------------------|---------------------------------------| | | No Data available for all ingredients | No Data available for all ingredients | # Bioaccumulative potential | Ingredient | Bioaccumulation | |------------|---------------------------------------| | | No Data available for all ingredients | # Mobility in soil | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | # **SECTION 13 DISPOSAL CONSIDERATIONS** # Waste treatment methods Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ► Reduction - ► Reuse - Recycling - ► Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - Product / Packaging disposal → DO NOT allow wash water from cleaning or process equipment to enter drains. - ▶ It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. # **SECTION 14 TRANSPORT INFORMATION** Print Date: 22/03/2019 Chemwatch: **71-3095** Page **10** of **11** Version No: 2.1.1.1 Bescon StaSeal Concrete Sealer Clear & Colour Issue Date: **24/11/2016** Print Date: **22/03/2019** Labels Required # Land transport (ADG) | UN number | 1866 | | |------------------------------|---|--| | UN proper shipping name | RESIN SOLUTION, flammable | | | Transport hazard class(es) | Class 3 Subrisk Not Applicable | | | Packing group | III | | | Environmental hazard | Not Applicable | | | Special precautions for user | Special provisions 223 Limited quantity 5 L | | # Air transport (ICAO-IATA / DGR) | transport (10/10 I/II/1/ DOI | • 7 | | | |------------------------------|---|----------------|-------| | UN number | 1866 | | | | UN proper shipping name | Resin solution flammable | | | | | ICAO/IATA Class | 3 | | | Transport hazard class(es) | ICAO / IATA Subrisk | Not Applicable | | | | ERG Code | 3L | | | Packing group | III | | | | Environmental hazard | Not Applicable | | | | | Special provisions | | A3 | | | Cargo Only Packing Instructions | | 366 | | | Cargo Only Maximum Qty / Pack | | 220 L | | Special precautions for user | Passenger and Cargo Packing Instructions | | 355 | | | Passenger and Cargo Maximum Qty / Pack | | 60 L | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y344 | | | Passenger and Cargo Limited Maximum Qty / Pack | | 10 L | | | | | | # Sea transport (IMDG-Code / GGVSee) | UN number | 1866 | | | |------------------------------|--|--|--| | UN proper shipping name | RESIN SOLUTION flammable | | | | Transport hazard class(es) | IMDG Class 3 IMDG Subrisk Not Applicable | | | | Packing group | | | | | Environmental hazard | Not Applicable | | | | Special precautions for user | EMS Number F-E , S-E Special provisions 223 955 Limited Quantities 5 L | | | Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # **SECTION 15 REGULATORY INFORMATION** Safety, health and environmental regulations / legislation specific for the substance or mixture LIQUID HYDROCARBONS(VARIOUS) IS FOUND ON THE FOLLOWING REGULATORY LISTS Not Applicable Chemwatch: 71-3095 Page 11 of 11 Issue Date: 24/11/2016 ### Bescon StaSeal Concrete Sealer Clear & Colour Version No: 2.1.1.1 Print Date: 22/03/2019 # **National Inventory Status** | National Inventory | Status | | |-------------------------------|--|--| | Australia - AICS | No (acrylate methacrylate copolymer) Non-disclosed ingredients | | | Canada - DSL | No (acrylate methacrylate copolymer) Non-disclosed ingredients | | | Canada - NDSL | No (acrylate methacrylate copolymer) Non-disclosed ingredients | | | China - IECSC | No (acrylate methacrylate copolymer) Non-disclosed ingredients | | | Europe - EINEC / ELINCS / NLP | No (acrylate methacrylate copolymer)
Non-disclosed ingredients | | | Japan - ENCS | No (acrylate methacrylate copolymer) Non-disclosed ingredients | | | Korea - KECI | No (acrylate methacrylate copolymer) Non-disclosed ingredients | | | New Zealand - NZIoC | No (acrylate methacrylate copolymer) Non-disclosed ingredients | | | Philippines - PICCS | No (acrylate methacrylate copolymer) Non-disclosed ingredients | | | USA - TSCA | No (acrylate methacrylate copolymer) Non-disclosed ingredients | | | Legend: | Yes = All ingredients are on the inventory No = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | | # **SECTION 16 OTHER INFORMATION** | Revision Date | 24/11/2016 | |---------------|---------------| | Initial Date | Not Available | ### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. # **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit. IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.